Bounding the Partition Function using Holder's Inequality

نویسندگان

  • Qiang Liu
  • Alexander T. Ihler
چکیده

We describe an algorithm for approximate inference in graphical models based on Hölder’s inequality that provides upper and lower bounds on common summation problems such as computing the partition function or probability of evidence in a graphical model. Our algorithm unifies and extends several existing approaches, including variable elimination techniques such as minibucket elimination and variational methods such as tree reweighted belief propagation and conditional entropy decomposition. We show that our method inherits benefits from each approach to provide significantly better bounds on sum-product tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some new generalizations of Hardy's integral inequality

We have studied some new generalizations of Hardy's integral inequality using the generalized Holder's inequality.

متن کامل

More results on Simpson’s type inequality through convexity for twice differentiable continuous mappings

Our aim in this article is to incorporate the notion of "strongly s-convex function" and prove a new integral identity. Some new inequalities of Simpson type for strongly s-convex function utilizing integral identity and Holder's inequality are considered.

متن کامل

On the Partition Function and Random Maximum A-Posteriori Perturbations

In this paper we relate the partition function to the max-statistics of random variables. In particular, we provide a novel framework for approximating and bounding the partition function using MAP inference on randomly perturbed models. As a result, we can use efficient MAP solvers such as graph-cuts to evaluate the corresponding partition function. We show that our method excels in the typica...

متن کامل

M-Theory with Framed Corners and Tertiary Index Invariants

The study of the partition function in M-theory involves the use of index theory on a twelve-dimensional bounding manifold. In eleven dimensions, viewed as a boundary, this is given by secondary index invariants such as the Atiyah–Patodi–Singer eta-invariant, the Chern–Simons invariant, or the Adams e-invariant. If the eleven-dimensional manifold itself has a boundary, the resulting ten-dimensi...

متن کامل

Rg Decimations and Confinement *

We outline the steps in a derivation of the statement that the SU(2) gauge theory is in a confining phase for all values of the coupling, 0 < β < ∞, defined at lattice spacing a. The approach employed is to obtain both upper and lower bounds for the partition function and the ‘twisted’ partition function in terms of approximate decimation transformations. The behavior of the exact quantities is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011